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Abstract

We propose a new conceptual multi-agent framework which, given a
game with an undesirable Nash equilibrium, will almost surely generate
a new Nash equilibrium at some predetermined, more desirable pure
action profile. We provide convergence proofs for the two-agent, two-
action game to show how applying a targeted, operant conditioning-like
mechanism to one or both of the agents will almost surely guarantee
the emergence of this new equilibrium as a result of changing the pay-
off matrix, when the agent(s) targeted for reinforcement learn inde-
pendently according to a standard model-free algorithm. We consider
both the case in which the additional reward is the result of an inter-
nal (re-)appraisal, such that the new equilibrium is stable independent
of the continued application of the procedure; and when it represents
additional reward that comes directly from the environment, which re-
sults in equilibrium decay if the reinforcement process is terminated.
We also consider how the evolution of the game structure is affected
by the relative values placed on immediate/future rewards, and the set
of outcomes that are reinforced, and we discuss our results within the
context of internally-generated reward and state representations.

1 Introduction

One of the biggest challenges in game theory and multi agent systems is
the problem of how independent and self-interested agents who do not com-
municate can be guided towards stable behaviour at some particular action
profile that has been deemed desirable [37]. The problem is complicated by
the fact that existing Nash equilibria can sometimes correspond to outcomes
that are either inefficient, or undesirable within a wider social context. Mov-
ing forwards, the issue is likely to become more significant. For example, it
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has been argued that purely reward-seeking agents will inevitably become
adversarial in nature towards humans [4]. In addition, with increasing au-
tonomy and generality, “the design of reward mechanisms eliciting desired
agent behaviour become both more important and more difficult” (the “re-
ward engineering principle” [11]).

We propose a new conceptual framework in which an external agent acts
as a reinforcer by deterministically applying targeted payoff reinforcement
to some subset of the agents (“reinforced agents”). Here we focus on the
two-agent, two-action case, however the framework can be generalised to n-
agents with almost sure (i.e. probability 1) convergence still guaranteed (see
Appendix). A high-level ordinal state representation (“Q-state”) is intro-
duced over the evolving payoff matrix (“M-state”) of each reinforced agent.
The reinforced agents then use their Q-states in order to learn to adapt their
behaviour to the changing environment in a trial-and-error process. For in-
dependent Q-learning agents, we will show how a predetermined new, strict
Nash Equilibrium (NE) in pure actions will almost surely emerge under the
directed influence of the external agent.

Reinforcement learning has traditionally considered all reward as ema-
nating directly from the environment. Recently, however, frameworks such
as Intrinsically Motivated Reinforcement Learning (IMRL) have begun to
distinguish between extrinsic reward (tied to task-related, extrinsic motiva-
tion) and intrinsic reward (generated according to fulfilment of agent-specific
goals) [8]. In particular, some IMRL-based frameworks have considered
emotion as the appraisal mechanism driving intrinsic reward generation [34]
[44]. Under the former (traditional) model, the additional reward in our
framework can be considered as being temporary in nature and, thus, on
termination of the process the equilibrium will gradually decay. In contrast,
under the second (more biologically plausible) perspective, we can consider
the external agent as sending signals in order to influence the internal ap-
praisal mechanisms underlying the generation of intrinsic reward, so that
changes to the payoff matrix can be considered as being more permanent in
nature. Although we don’t consider the specifics of the appraisal/reappraisal
mechanism here, our results provide motivation for implementations based
on these principles.

The remainder of this paper is organised as follows. In Section 2 we
outline related work, before detailing our new framework in Section 3 and
providing convergence proofs and related results in Section 4. In Section 5 we
present simulation results for the evolution of a particular game representing
a parent-child attachment relationship. Finally, in Section 6, we provide a
summary and some suggestions for future work.
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2 Related Work

A game-theoretic mediator is a reliable, external agent, who can optionally
play on behalf of each participant in the game, but who cannot enforce
behaviour. Many variants have been considered, for example in [25] the
inclusion of the mediator changes the structure of the game, resulting in
the emergence of a “mediated equilibrium” which is additionally a strong
equilibrium (i.e. resistant to coalition deviation). In [16] the performance
of the concept of soft correlated equilibrium is studied in congestion games,
where the game is considered to be in equilibrium if no agent can gain uni-
laterally by deviating from the mediator’s recommendation. Closely related
are arbitration frameworks, in which the agents must conform to the exter-
nal agent’s (arbitrator’s) recommendations on how to act (e.g. final offer
arbitration [14]).

Within these frameworks, the mediated outcome will only persist so long
as the mediating agent remains present; a requirement that is undesirable
under many scenarios. In addition, there is a reliance on all of the agents
being aware of, and both able and willing to communicate with, the media-
tor. In order to address these issues, we propose a framework under which
an external agent conditions behaviour in either one or both of the agents by
reinforcing the payoffs for certain outcomes following their occurrence. Our
framework achieves a form of conflict resolution by modelling the gradual
evolution of a new, stable equilibrium which, once generated, will (under
assumptions of internal reappraisal) persist regardless of whether or not the
external agent continues to exert an influence over the game, and which ad-
ditionally does not necessarily require that the external agent be in contact
with all agents.

Dynamic games in which the payoffs change have previously been con-
sidered in Stochastic Games (SG) [35], which are the n agent generalisation
of a Markov Decision Process (MDP) [18]. In an SG the payoff matrix forms
the current state and can change between each round according to some sta-
tionary probabilistic function over the current state and joint action choices.
They have been studied as a framework for non-cooperative multi-agent re-
inforcement learning [23]: mixed SGs in particular, in which no constraints
are imposed on the reward functions of the agents, are a suitable model for
self-interested agents acting within a dynamic environment [7].

Whilst the environment in a multi-agent SG is stationary over state and
action vectors in an objective sense, for each agent it is non-stationary since
its sensing of the environment subsumes the behaviour of the remaining
agents, and thus optimal policy convergence is not always guaranteed for
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independent Q-learners [39]. With this in mind, multi-agent extensions to
Q-learning have often involved some form of opponent modelling, and have
considered Q values over joint actions rather than just the agent’s own ac-
tion (we refer to [3] for a good comparative evaluation of techniques). An
influential example is Nash-Q learning [19], which, under certain conditions
(including that the agent observes not only its own reward but those of all
other agents as well), will provably converge on an NE policy. In contrast
to Nash-Q learning, our framework does not require opponent modelling.

In reinforcement learning, shaping rewards are additional rewards that
are supplied to an agent with the aim of increasing convergence rate to an
optimal policy. Potential-Based Reward Shaping (PBRS) is an influential
variant in which additional reward is defined according to the difference be-
tween a potential function over pre and post-transition states. In particular,
it has been shown that PBRS does not change the underlying optimal policy
for a single-agent MDP [28]. Subsequently, PBRS was extended to potential
advice over both states and actions [40]. PBRS has additionally been consid-
ered in the multi-agent domain, where importantly it has been proven that,
although these additional rewards affect exploration, they do not change the
NE policy in the underlying SG [10]. In contrast, we consider convergence
to a new NE, using additional reward signals based only on the target action
profile and observed outcomes. The work in [45] considered how additional
incentive rewards could be associated with MDP states in order to induce
a particular, pre-specified policy, however only the single-agent setting is
considered. [26] determined the minimum amount of additional reward re-
quired to induce cooperative behaviour between two stateless Q-learning
agents playing a Prisoner’s Dilemma game.

In IMRL [8], a distinction is made between extrinsic reward (related to
extrinsic motivation and external, task-related goals) and intrinsic reward
(related to intrinsic motivation and agent-specific goals, such as learning or
exploration). A recent extension to the IMRL framework, called Emotion-
based Intrinsically Motivated Reinforcement Learning (EIMRL), has pro-
posed that the reward signal should constitute both extrinsic and intrinsic
reward, with the intrinsic reward being generated according to a variation
of emotional appraisal theory (in particular novelty, goal relevance, con-
trol and valance dimensions of appraisal) [34]. This separation of reward
is more biologically plausible and in line with findings from neuroscience,
which recognises an intricate reward process. Phasic dopamine release in
midbrain dopamine neurons in the ventral tegmental area has long been
linked to habitual learning, through the encoding of a model-free reward
prediction error, with respect to homeostatic-based primary reward signals
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from the hypothalamus [20]. However, such signals are likely to encapsulate
errors with respect to more than just primary reward. For example, it is
currently believed that the orbitofrontal cortex and amygdala, circuits cen-
tral to emotional processing, play a key role in the computation of reward
predictions and errors, and that these are projected to midbrain dopamine
neurons via the striatum [33, p.316]. Furthermore, recent evidence sug-
gests that both cognitive [42] and emotional [43] reappraisals can modulate
feedback-related negativity signals, which have been theorised to convey
negative reward-prediction errors related to reinforcement learning [29].

A recent study applied a variant of EIMRL to a multi-agent spatial pris-
oner’s dilemma [44]. The authors found experimentally that agents using
particular appraisal mechanisms, taking into account a metric of social fair-
ness, could come to behave in a more cooperative way compared to agents
without such a socially-aware appraisal mechanism. Although we don’t con-
sider the specifics of appraisal mechanisms here, our conceptual framework
and results provide motivation for the development of internal appraisal
mechanisms following its principles. Such mechanisms will provide a robust
way to change multi-agent behaviour in a dynamic, on-line and predictable
manner, in cases in which rewards are intrinsically generated and cannot be
altered directly by an outside influence, but instead can only be influenced
in a gradual way using perceptual signals (as in biological systems).

3 Framework

We consider the game in Fig. 1 with a set of 2 agents A = {α1, α2}, where the
action set for agent α1 isB1 = {β11, β12}, and for agent α2 isB2 = {β21, β22}.
The initial payoff matrices are U and V for α1 and α2 respectively. We
assume that this game has an initial NE in pure actions at NEinitial =
(β12, β22), i.e. that U22 ≥ U12 and V22 ≥ V21. Our goal is to generate a
new, strict NE in pure actions at NEtarget = (β11, β21). Either one or both
of the agents αi ∈ R ⊆ A will take the role of “reinforced” agents, and any
remaining agent αj ∈ A \R will be a “reactive” agent.

We now introduce a source of additional reward. As discussed previously,
this additional reward can be considered as either coming directly from the
environment (e.g. from an agent external to the game), or alternatively as
resulting from an internal (re-)appraisal mechanism. The second case could
correspond to, for example, a process of self-reflection or self-therapy within
a human agent, or to a reappraisal triggered by a particular environmental
signal. From this point onwards, we refer to the source of additional re-
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α2

β21 β22

α1
β11 U11, V11 U12, V12
β12 U21, V21 U22, V22

Figure 1: The initial game with a NE in pure actions at (β12, β22)

ward simply as the “external agent”. The external agent is considered as
deterministically exerting an influence over the reinforced agents partaking
in the game. We assume that the reactive and reinforced agents do not
communicate with each other, but the reinforced agent(s) are free to com-
municate with the external agent, who is not considered as being an agent
that partakes in the game itself.

3.1 Reactive Agents

We assume that reactive agents are unaware of any change to the structure
of the game being played and that they therefore continue to play according
to their initial, static payoff matrix. It is also assumed that these agents
will be playing an iterative strategy with a reactive characteristic; i.e. that
they pick their move in each round based on their analysis of the pattern of
play of the other agents. Such a reactive iterative strategy is one in which
the reactive agent maximises its expected payoff based on a probability
distribution over the last t moves that the other agents have chosen. In this
study we concentrate on the simple case of this iterated strategy for which t
= 1, i.e. a Best Response to Last Move (BRTLM) iterated strategy, whereby
a reactive agent picks the action corresponding to its highest payoff, based
on the assumption that the other agent will play the same move that it
played in the previous round.

3.2 Reinforced Agents

The reinforced agents (either one or both of the agents) must change the
value that they place on individual outcomes in order for a new pure action
NE to emerge. Each reinforced agent therefore plays a dynamic game in
which its payoff matrix changes according to a payoff reinforcement rule,
and we model a learning process for each reinforced agent so that the rein-
forcement of certain desirable action combinations gradually leads all agents
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into a stable pattern of play at NEtarget. Note that the NE for any stage
game depends only on the relationship between the ordinal (i.e. relative)
ranking of the payoffs, and not on their magnitude. It is therefore fair to
assume that the agents consider the ranking over the potential payoffs when
they come to choose their actions, and thus it is natural to use an ordinal
representation for the agent’s state. We also note that, in a practical sense,
ordinal utility is much easier to elicit and measure than cardinal utility.

Definition 3.1. For U, V ∈ R+2×2
we define U ≡ V iff:

Umn < Um′n′ ⇔ Vmn < Vm′n′ and

Umn = Um′n′ ⇔ Vmn = Vm′n′

A complete set of equivalence classes for ≡ is contained in N+
4
2×2

, where
N+
4 = {1, 2, 3, 4}, and for convenience we use this representation. Let

M ∈ R+2×2
be the current payoff matrix for αi ∈ R (the “M-state”). We

introduce the canonical representation of M under ≡ by:

[M ] := M/≡ ∈ E ⊂ N+
4
2×2

which we call the “Q-state”, where:

E = {X ∈ N+
4
2×2 | min

mn
(Xmn) = 1, ∀m,n :

(Xmn = 1 or ∃ m′, n′ : Xm′n′ = Xmn − 1)}

The Q-state [M ] is thus a dense ranking over αi’s payoff matrix M (such that
equal payoffs receive the same ordinal value and the next outcome receives
the immediately following ordinal value), with minimum ordinal value 1 in
each Q-state. The current state for αi is given by the (M-state, Q-state)
tuple (M, [M ]).

We say that reinforced agent αi plays a “reinforced game”, which is
defined by the state transition system and transition rules given in Fig. 2.
The state transition system is a 4-tuple, defined fully by the state space, αi’s
initial state (M0, [M0]), reinforcement set ηi and reinforcement parameter
ri > 1. The initial state consists of αi’s initial payoff matrix M0 (αi’s
initial M-state) along with its equivalence [M0] (αi’s initial Q-state). The
reinforcement set ηi is the set of outcomes that will trigger reinforcements
in αi’s payoff matrix M , and the reinforcement parameter ri > 1 specifies
the magnitude of these reinforcements.
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(
R+2×2 × E,

(
M0, [M0]

)
, ηi, ri

)
(i)

(M, [M ])
(β1p,β2q)−→ (M, [M ]) if (β1p, β2q) /∈ ηi

(M, [M ])
(β1p,β2q)−→ (M ′, [M ′]) if (β1p, β2q) ∈ ηi

with M ′mn =

{
ri Mmn if m = p and n = q

Mmn otherwise

(ii)

Figure 2: (i) State transition system describing the reinforced game for agent
αi (ii) Transition rules

At each discrete step in time (representing a moment in which a decision
is to be made) αi’s system is in some particular Q-state ([M ]). We assume
that the current M-state, and thus also the current Q-state, are fully ob-
servable to αi. We also assume that each Q-state has the same action set
Bi. A multiplicative reinforcement of magnitude ri will be applied to Mpq

following every occurrence of an action-combination outcome (β1p, β2q) ∈ ηi,
resulting in reinforced payoff matrix M ′ as in Fig. 2 (ii). Whilst it would be
possible to consider other types of reinforcements (e.g. an additive rule, or
some form of convergent series), we chose to employ a multiplicative factor
as the simplest case. We also note that our multiplicative factor has the
desirable property of inducing proportional payoff increments.

We assume that reinforced agents learn how to act within the game ac-
cording to a model-free Temporal Difference (TD)-based algorithm [36]. TD
learning is a form of trial-and-error learning with roots in psychology and
operant conditioning, where reward predictions are adjusted immediately
following environmental feedback in order to improve subsequent predic-
tions. It has long been argued that the properties of the TD error signal
are reflected in the brain’s dopamine system, with phasic firing patterns en-
capsulating a model-free reward-prediction error (we refer to [41] for a good
overview).

Two prominent examples of TD-based algorithms for control are Q-
learning and its on-policy variant SARSA, and evidence from animal studies
has supported a biological basis for the prediction update mechanisms used
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in both [32] [27]. Here we employ the former on top of the underlying tran-
sition system as a simple model of how the choices that the agent makes
will adapt over time, allowing us to capture an anticipation of future reward
for deviating from the initial NE for different types of agents with differing
discount factors. The Q function Q : E × Bi → R calculates a Q value for
each action of the reinforced agent αi associated with a particular Q-state,
initialised under the assumption that the opposing agent will play NEinitial
(i.e. Q0([M ], βij) = [M ]iq for NEinitial = (βip, βkq)). Following the choice of
action βij ∈ Bi in the current Q-state [M ], we update the Q values according
to the conventional single-agent update rule:

Q([M ], βij) ← Q([M ], βij) + `(D(M,βij)

+ δi max
βiq

Q(s, βiq)−Q([M ], βij))

where s ∈ {[M ], [M ′]} (i.e. the state may change, as according to Fig. 2),
and 0 ≤ δi < 1 is αi’s discount factor. The learning rate 0 < ` ≤ 1 is
set according to `([M ], βij) = (n([M ], βij))

−1, where n([M ], βij) equals the
number of times action βij has been chosen in Q-state [M ], so that initially
`([M ], βij) = 1 and decreases with each subsequent selection of action βij in
Q-state [M ]. The reward αi receives for choosing action βij in state (M, [M ])
is D(M,βij). Here, D(M,βij) is either a reinforced or non-reinforced payoff.
In particular, if action-combination outcome (βij , βpq) ∈ ηi has just occurred
then D(M,βij) = riMjq. Alternatively, if (βij , βpq) /∈ ηi has just occurred
then D(M,βij) = Mjq. We employ a simple softmax action selection rule
(based on Luce’s choice axiom [24]), according to the following probability
mass function:

P (βij |[M ]) = k
Q([M ],βij)
i /

∑
j
k
Q([M ],βij)
i

with exploration parameter ki > 1 for αi. Thus, reinforced agents choose
their actions according to a path-dependent, non-stationary stochastic pro-
cess.

To illustrate, consider as an example the game in Fig. 1, where α1 is
a reactive agent and α2 is a reinforced agent. Following N rounds of play,
where the outcome (β11, β21) has occurred j times, (β12, β21) has occurred m
times, and (β11, β22) and (β12, β22) have occurred a total of N − (j+m) ≥ 0
times, then given reinforcement set η2 = { (β11, β21), (β12, β21) }, α2’s payoff
matrix will have been reinforced to V (j,m) (Fig. 3), where the ordinal
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V (j,m) =

(
r2
jV11 V12

r2
mV21 V22

)
Figure 3: Example of a reinforced payoff matrix (M-state). The densely-
ranked ordinal equivalence of this payoff matrix forms the corresponding
reinforced agent’s current Q-state.

equivalence of this reinforced payoff matrix [V (j,m)] is α2’s current Q-state
in its state transition system. The payoff elements V12 and V22 have not
been reinforced since (β11, β22) /∈ η2 and (β12, β22) /∈ η2.

3.3 Alternative State Representations

One can consider alternative state representations. For example, the rein-
forced agent could use as its state representation its payoff matrix alone. In
this case, the system would be a non-stationary, infinite transitional system
with states given by (j,m) ∈ N2. In such a system, with ri > 0 a constant, a
state can never be re-visited, and thus such a representation could arguably
just as well be modelled by a one-state framework such as a non-stationary
multi-armed bandit [21].

For a such a single-state representation, our framework would also con-
verge and would do so at a faster rate than for the formulation defined above.
However, the focus of this paper is on dynamic, internally-generated state
representations, for which the consider the simplest case consisting of a high-
level preference ranking over outcomes. We discuss the framework within
the context of richer state formulations (e.g. also incorporating external
perception and memory representations) in Section 6.

4 Convergence

In Section 4.1 we give a convergence proof for the two-agent, two-action
game given in Fig. 1, for a single reinforced agent and a single reactive
agent. In Section 4.2, we provide a convergence proof for the case whereby
both agents are reinforced agents, and each learn independently by treating
the opposing agent as part of the environment.

4.1 Reinforcing A Single Agent

For reactive agent α1 and reinforced agent α2, we will show that the con-
vergence criterion is:
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U11 > U21 and

η = {NEtarget} ∪ ζ with ζ ⊆ {(β12, β21)}
(C1)

i.e. the target NE outcome must be reinforced, and the deviation from the
initial NE by α2 can optionally also additionally be reinforced. If U11 < U21

then by definition a new NE cannot be generated at NEtarget = (β11, β21),
since α1’s payoff matrix does not change. If U11 = U21 then the dynamics
will depend on how α1 discriminates between outcomes with equal payoffs,
although any new NE generated at NEtarget will not be a strict NE. As an
example, a coordinated outcome can be generated as a new NE in the battle
of the sexes game using single agent reinforcement. We consider another
example (an attachment game) experimentally in Section 5.

Lemma 4.1. Suppose a sequence qn of real numbers satisfies: qn ≤ qn−1 +
1
n(a + δqn−1 − qn−1) where a ∈ R and δ ∈ [0, 1) are constants. Then,
lim supn→∞ qn ≤ a/(1− δ)
Proof. Let xn := a

1−δ − qn. Then:

xn−1 − xn ≤ ((1− δ)/n)xn−1

and thus:

xn ≥ xn−1 (1− ((1− δ)/n))

≥ x0 (1− ((1− δ)/1)) (1− ((1− δ)/2)) ... (1− ((1− δ)/n))

i.e. lim infn→∞ xn ≥ x0 lim infn→∞
∏n
m=1 (1− ((1− δ)/m)). Since (1 −

δ)
∑∞

n=1
1
n diverges, it follows from [1, p.192-193] (Theorem 6) that the prod-

uct diverges to zero. Hence, because

lim inf
n→∞

−qn = − lim sup
n→∞

qn

we have that lim supn→∞ qn ≤ a/(1− δ).

Corollary 4.1. If qn = qn−1 + 1
n(a+ δqn−1 − qn−1) then lim qn = a/(1− δ)

Proof. We have lim supn→∞ qn ≤ a/(1 − δ) and by putting pn := −qn we
also get

lim sup
n→∞

−pn ≤ a/(1− δ)

or lim infn→∞ qn ≥ a/(1− δ), from which the result follows.
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Suppose now a coupled pair of sequences (pm, qn) ∈ R2 for m,n ∈ N and
some initial value for (p0, q0) is defined recursively by

pm = pm−1 +
1

m
(a+ δmax(pm−1, qn−1)− pm−1)

qn = qn−1 +
1

n
(b+ δmax(pm−1, qn−1)− qn−1)

where 0 ≤ δ < 1 and a ≥ b. At each point in time, either pm is updated
according to the above relation and m is incremented to m+ 1, or alterna-
tively qn is updated according to the above relation and n is incremented to
n+ 1.

Lemma 4.2. Assume that the sequences pm and qn are each updated in-
finitely many times. Then (pm, qn)→ (a/(1− δ), b− a+ (a/(1− δ))

Proof. Consider the doubly parametrised family of non-deterministic dy-
namical systems

(f (m), g(n)) : R2 → R2

f (m)(p, q) = p+
1

m
(a+ δmax(p, q)− p)

g(n)(p, q) = q +
1

n
(b+ δmax(p, q)− q)

for m,n ∈ N. At each point in time, either f (m) or g(n) is chosen to act
on (p, q). If f (m) is chosen then m is incremented by one whereas if g(n) is
chosen then n is incremented by one.

For each m,n ∈ N, this dynamical system has a unique fixed point at
(a/(1− δ), b− a+ (a/(1− δ)), which can be checked by solving:

p = p+
1

m
(a+ δmax(p, q)− p)

q = q +
1

n
(b+ δmax(p, q)− q)

In fact, by eliminating max(p, q), we obtain p − a = q − b, i.e., p =
q + (a − b) which implies p ≥ q since a ≥ b. This gives using the first
equation a+ δp− p = 0 or p = a/(1− δ) and q = −(a− b) + a/(1− δ).

Now we change coordinates by letting x = p− a/(1− δ) and y = q+ a−
b− a/(1− δ) to obtain a new system R2 → R2 given by:

(x, y) 7→ x+
1

m
(δmax(x, y − (a− b))− x)
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(x, y) 7→ y +
1

n
(δmax(x, y − (a− b))− y)

The unique fixed point of the system is at the origin (x, y) = (0, 0).
We consider two cases: (i) x ≥ y−c and (ii) x < y−c, where c := a−b ≥

0. Let S1 = {(x, y) ∈ R2 : x ≥ y − c} and S2 = {(x, y) ∈ R2 : x < y − c}.
For (i), we obtain the following two maps to capture the non-deterministic
dynamics and for convenience we drop the explicit reference to parameters
m and n to define F,G : S1 → R2 with components F1, F2 and G1, G2

respectively:

F1(x, y) = (1− (1− δ)/m)x, F2(x, y) = y

G1(x, y) = x, G2(x, y) = δx/n+ (1− 1/n)y

For (ii), we obtain the maps H,T : S2 → R2 with:

H1(x, y) = (1− 1/m)x+ δy/m− δc/m, H2(x, y) = y

T1(x, y) = x, T2(x, y) = (1− (1− δ)/n)y − δc/n.

Given a point (x, y) ∈ R2, the dynamics is now defined as follows. If
x ≥ y − c, then either the map F or G is selected to provide the next pair
of elements for (x, y) and then either m or n is respectively incremented,
whereas if x < y − c, then either H or T is selected to obtain the next pair
(x, y) and then again either m or n is respectively incremented.

A simple calculation shows that

x− F1(x, y) = 1
m(1− δ)x

x−H1(x, y) = 1
m(x− δ(y − c))

y −G2(x, y) = 1
n(−δx+ y)

y − T2(x, y) = 1
n((1− δ)y + δc)
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x=y−c

δ

δ x=   (y−c)

xy=
c

− c

0
x

y

δ δ y=−c   /(1−  )

From the above, the dynamics of the non-deterministic system can be
determined from its phase portrait as in Figure 1. In the first quadrant,
x ≥ 0 and y ≥ 0, the region bounded by the lines x = δ(y − c), y = δx
and the y axis, is invariant under the dynamics, any orbit entering into this
region would stay in the region and converge to the origin (0, 0). Similarly,
in the third quadrant, i.e., for x ≤ 0 and y ≤ 0, the region bounded by the
y axis, and the lines y = δx and x = y − c is an invariant region with every
orbit converging to the origin. Orbits in the other regions will either enter
into these two invariant regions first or will converge to the origin directly.
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To prove the above assertions, we first show that the region R1 bounded
by the lines x ≥ 0, y = δx and the x = δ(y − c) axis, is invariant under the
dynamics:

1. Suppose (x, y) ∈ R1 ∩ S1, i.e., x ≥ 0, y ≥ δx, and x ≥ y − c (and thus
x ≥ δ(y − c)).

• To show F1(x, y) ≥ δ(F2(x, y) − c), we consider two different
cases. If y ≥ c then F1(x, y) − δ(F2(x, y) − c) = x(1 − 1

m(1 −
δ)) − δ(y − c) ≥ (y − c)(1 − δ)(1 − 1

m) ≥ 0. If y < c, then
F1(x, y)− δ(F2(x, y)− c) = x(1− 1

m(1− δ))− δ(y− c) ≥ 0 as both
terms are non-negative.

• To show F2(x, y) ≥ δF1(x, y), note that F2(x, y) = y ≥ δx ≥
δ(1− (1− δ)/m)x = δF1(x, y).

• To show G1(x, y) ≥ δ(G2(x, y)−c), we calculate using −δx ≥ −y:
G1(x, y)− δ(G2(x, y)− c) = x− δ(δx/n+ (1− 1/n)y− c) ≥ δ(y−
c)−δ(y/n+y−y/n−c) = δ(y−c)−δ(y/n−c) = δy(1−1/n) ≥ 0.

• To showG2((x, y) ≥ δG1(x, y), we calculate: G2((x, y)−δG1(x, y) =
y(1− 1

n) + δx/n− δx = (y − δx)(1− 1/n) ≥ 0.

• We also have F1(x, y) = (1− (1−δ)/m)x ≥ 0 and G1(x, y) = x ≥
0.

2. Suppose (x, y) ∈ R1 ∩ S2, i.e., x, y ≥ 0, x ≥ δ(y − c) and x < y − c
(and thus y ≥ δx).

• To show H1(x, y) ≥ δ(H2(x, y) − c) we calculate: H1(x, y) −
δ(H2(x, y) − c) = (1 − 1/m)x + δy/m − δc/m − δ(y − c) ≥ (1 −
1
m)δ(y−c)+δy/m−δc/m−δ(y−c) = (y−c)(1−1/m)(1−δ) ≥ 0,
since y ≥ c in R1 ∩ S2.
• To show H2(x, y) ≥ δH1(x, y) we compute using −x ≥ −y + c:
H2(x, y) − δH1(x, y) = y − δ((1 − 1/m)x + δy/m − δc/m) =
y − δ(1− 1/m)x− δ(δy/m− δc/m) ≥ y + δ(1− 1/m)(−y + c)−
δ2(y−c)/m = y(1−δ(1−1/m)−δ2/m)+δ(1−1/m)c+δ2c/m =
y(1− δ(1− (1− δ)/m)) + δ(1− (1− δ)/m)c ≥ 0.

• To show T1(x, y) ≥ δ(T2(x, y)− c) we use x ≥ y + c to calculate:

T1(x, y)− δ(T2(x, y)− c) = x− δ((1− (1− δ)/n)y− (δc/n)− c) ≥
y+ c− δ(1− (1− δ)/n)y+ δ2c/n+ δc = y(1− δ+ δ((1− δ)/n)) +
(δc/n) + δc = y(1− δ(1− ((1− δ)/n))) + δc(1 + (δ/n)) ≥ 0.
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• To show T2(x, y) ≥ δT1(x, y) we calculate using y ≥ x + c:
T2(x, y)− δT1(x, y) = (1− (1− δ)/n)y− δc/n− δx ≥ (x+ c)((1−
(1− δ)/n))− δc/n− δx = (1− 1/n)(x(1− δ) + c) ≥ 0.

• We also have H1(x, y) = (1 − 1/m)x + δy/m − δc/m ≥ (1 −
1
m)δ(y− c) + δy/m− δc/m = (y− c)(1− (1− δ)/m) ≥ 0 and also
T1(x, y) = x ≥ 0.

We also note that for (x, y) ∈ R1 ∩ S1, we have

F1(x, y)− x = − 1
m(1− δ)x ≤ 0

F2(x, y)− y = 0

G1(x, y)− x = 0

G2(x, y)− y = − 1
n(−δx+ y) ≤ 0

For (x, y) ∈ R1 ∩ S2, we similarly have:

H1(x, y)− x = − 1
m(x− δ(y − c)) ≤ 0

H2(x, y)− y = 0

T1(x, y)− x = 0

T2(x, y)− y = − 1
n((1− δ)y + δc) ≤ 0

It follows that orbits in (x, y) ∈ R1 move in the south-west direction and
thus converge to the unique fixed point (0, 0).

Now we show that the region R2 bounded by the y axis, x = y − c and
y = δx is invariant under the dynamics. Suppose (x, y) ∈ R2, i.e. x, y ≤ 0,
y ≤ δx and x ≥ y − c with y < c.

• We have that F1(x, y) = x(1− ((1− δ)/m)) ≤ 0 and G1(x, y) = x ≤ 0

• We also have that F2(x, y) = y ≤ 0 and G2(x, y) = δ(x/n) + y(1 −
(1/n)) ≤ 0

• To show F2(x, y) ≤ δF1(x, y) we compute δF1(x, y)−F2(x, y) = δx(1+
((δ−1)/m))−y ≥ δ(y−c)(1+((δ−1)/m))−y = y(δ(1+((δ−1)/m))−
1)− c(δ(1 + ((1− δ)/m))) ≥ y(δ(1 + ((δ− 1)/m))− 1)− y(δ(1 + ((1−
δ)/m))) = −y ≥ 0

• To show G2(x, y) ≤ δG1(x, y) we calculate: δG1(x, y) − G2(x, y) =
δx− (δ(x/n) + y(1− (1/n))) = δx(1− (1/n))− y(1− (1/n)) ≥ δ(y −
c)(1− (1/n))− y(1− (1/n)) ≥ 0
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• To show F1 ≥ F2 − c we compute: F1(x, y) − F2(x, y) + c = x(1 −
((1− δ)/m))− y + c ≥ (y/δ)(1− ((1− δ)/m)) + c− y = −y((1−m−
δ)/δm) + c− y ≥ 0

• To show G1(x, y) ≥ G2(x, y)−c we calculate: G1(x, y)−G2(x, y)+c =
x − ((δx)/n) − y(1 − (1/n)) + c = x(1 − (δ/n)) − y(1 − (1/n)) + c ≥
x(1 − (δ/n)) − c(1 − (1/n)) + c = x(1 − (δ/n)) + (c/n) ≥ (y/δ)(1 −
(δ/n))+(c/n) = −y((δ−n)/(δn))+(c/n) ≥ −c((δ−n)/(δn))+(c/n) =
cn/(nδ) ≥ 0

For (x, y) ∈ R2, we have

F1(x, y)− x = − 1
m(1− δ)x ≥ 0

F2(x, y)− y = 0

G1(x, y)− x = 0

G2(x, y)− y = − 1
n(−δx+ y) ≥ 0

It follows that orbits in (x, y) ∈ R2 move in the north-east direction and
thus converge to the unique fixed point (0, 0).

Corollary 4.2. Suppose we have the non-deterministic, coupled recurrence
relations:

pm = pm−1 +
1

m
(a+ δmax(pm−1, qn−1)− pm−1)

qn = qn−1 +
1

n
({b, b′}+ δmax(pm−1, qn−1)− qn−1)

where {b, b′} means that either b or b′ is chosen. Then lim sup pm ≤ max(p, p′)
and lim inf pm ≥ min(p, p′), where p and p′ are the limits of pm in the de-
terministic system when only b, respectively only b′, are chosen. Similarly,
lim sup qn ≤ max(q, q′) and lim inf qn ≥ min(q, q′).

Proof. Suppose b > b′. Denote by pm(b) and qn(b) the pair of deterministic
sequences that are updated as pm and qn except that the value b is always
chosen in the recursive relation for qn. Similarly, denote by pm(b′) and qn(b′)
the pair of deterministic sequences that are updated as pm and qn except
that the value b′ is always chosen in the recursive relation for qn. By our
assumption, it follows that pm(b) ≥ pm ≥ pm(b′) and qn(b) ≥ qn ≥ qn(b′)
from which the result follows.
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Corollary 4.3. Now also suppose that either a or a′ can be chosen in pm,
i.e.:

pm = pm−1 +
1

m
({a, a′}+ δmax(pm−1, qn−1)− pm−1)

qn = qn−1 +
1

n
({b, b′}+ δmax(pm−1, qn−1)− qn−1)

Then

lim sup pm ≤ max(p(a, b), p(a′, b), p(a, b′), p(a′b′))

lim inf pm ≥ min(p(a, b), p(a′, b), p(a, b′), p(a′b′))

where p(a, b) is the limit of pm in the deterministic system when only a and
b are chosen. Similarly:

lim sup qn ≤ max(q(a, b), q(a′, b), q(a, b′), q(a′b′))

lim inf qn ≥ min(q(a, b), q(a′, b), q(a, b′), q(a′b′))

Proof. Suppose a ≥ a′ and b ≥ b′. Denote by pm(a, b) and qn(a, b) the pair
of deterministic sequences that are updated as pm and qn except that the
value a is always chosen in pm, and the value b is always chosen in qn. By our
assumption we have pm(a, b) ≥ pm ≥ pm(a′, b′) and qn(a, b) ≥ qn ≥ qn(a′, b′),
from which the result follows.

Lemma 4.3. From any arbitrary point in the reinforced game, the reinforced
agent will almost surely eventually choose their target equilibrium action.

Proof. Consider the case whereby reinforced agent α2 is in state (V, [V ])
and has chosen β21 a total of n21 ≥ 0 times in Q-state [V ], and β22 a
total of n22 ≥ 0 times in Q-state [V ], and that from this point on it
chooses its actions according to an infinite sequence consisting only of β22.
Given reactive agent α1, this results in an infinite sequence of outcomes
(β11 or β12, β22), (β12, β22), (β12, β22), ... where the first selection of β11 or
β12 depends on the previous action choice of α2. Since (β11 or β12, β22) /∈ η,
no reinforcements and thus no state changes occur.

We set Qn21([V ], β21) := pm and Qn22([V ], β22) := qn in order to simplify
the notation. The infinite probability product for this infinite selection of
β22 by α2 is given by:
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∞∏
i=0

kqn+i

kpm + kqn+i
=

∞∏
i=0

1

kpm−qn+i + 1
= 0

which is zero since, by Corollary (4.4), we know that the sequence qn+i
is bounded. Thus, α2 will almost never choose β22 an infinite number of
consecutive times, and so from any arbitrary point in the reinforced game,
α2 will almost surely eventually choose β21.

Theorem 4.1. If condition ( C1) holds on the payoff matrix for the reactive
agent α1, and on the reinforced outcomes η for the reinforced agent α2, then
the reinforced game will converge to the new target NE almost surely.

Proof. If condition (C1) holds, then in order for NEtarget to emerge as
a new strict NE we require n reinforcements on agent α2’s initial pay-
off V11, such that rnV11 > V12. Therefore it follows that we require n =
blogr(V12/V11)c + 1 reinforcements on V11 (n provides an upper bound on
the number of reinforcements on (β11, β21) required for NEtarget to emerge
from any arbitrary point in the reinforced game).

Since the reactive agent α1 is playing the BRTLM iterated strategy, we
require agent α2 to choose action β21 ∈ NEtarget two consecutive times in
order for each reinforcement on NEtarget to occur: n is therefore an upper
bound on the number of consecutive choices of β21 ∈ NEtarget by agent
α2 required at some arbitrary point in the reinforced game as a sufficient
condition for convergence.

Consider first the reinforcement set η = {(β11, β21)}. We setQm([V ], β21) :=
pm and Qn([V ], β22) := qn in order to simplify the notation. The probability
of two consecutive choices of β21 (following a previous action choice of β22)
at some arbitrary point (m,n) ∈ N2 in the game is:

P (β21|[V ]) P (β21|[V ]) =
kpm

kpm + kqn
kpm+1

kpm+1 + kqn

=
1

(1 + kqn−pm)(1 + kqn−pm+1)

Since pm and qn are both bounded above and below (Corollary 4.3), it follows
that, for any (m,n) ∈ N2, the probability of two consecutive choices of β21
is greater than some minimum positive number a:

1 ≥ 1

(1 + kqn−pm)(1 + kqn−pm+1)
≥ a > 0
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Thus, the probability of two consecutive choices of β21 not occurring in the
next 2 timesteps (i.e. 1− (P (β21|[V ]) P (β21|[V ]))) is bounded by:

1− a ≥ 1− (P (β21|[V ]) P (β21|[V ])) ≥ 0

and the probability that two consecutive choices of β21 do not occur within
the next 2n timesteps is bounded by:

(1− a)n ≥ (1− (P (β21|[V ]) P (β21|[V ])))n ≥ 0

From this, we can see that the probability that two consecutive choices
of β21 never occurs, i.e. (1 − (P (β21|[V ]) P (β21|[V ])))n for n → ∞, is
zero, since limn→∞ (1− a)n = 0 for 1 ≥ a > 0. Thus, at any point in the
reinforced game, agent α2 will almost surely eventually select action β21 two
consecutive times.

Consider now the reinforcement set η = {(β11, β21), (β12, β21)}. We pro-
ceed with a proof by contradiction, and assume that outcome (β11, β21)
never occurs. We know that, from any arbitrary point in the game, rein-
forced agent α2 will almost surely eventually select β21 ∈ NEtarget, and will
thus select β21 an infinite number of times. By our assumption, these action
selections will all result in outcome (β12, β21).

Following i selections of β21 by α2 (and therefore following i occurrences
of (β12, β21), where i = blogr(max(V11, V12, V22)/V21)c + 1, α2 will be in
terminal state (V ∗, [V ∗]) in which [V ∗]21 is strictly a maximum. For β21
being chosen n21 times in Q-state [V ∗], β22 chosen n22 times, the Q value
for β21 is:

Qn21([V ∗], β21) = Qn21−1([V
∗], β21) +

1

n21
(rn21 V ∗21

+δmax(Qn21−1([V
∗], β21), Qn22([V ∗], β22))−

Qn21−1([V
∗], β21))

We set Qm([V ∗], β21) := pm and Qn([V ∗], β22) := qn in order to simplify
the notation. It can be shown that, because of the rm/m term, pm →∞ as
m→∞. In addition, because qn increases by at most 1

n(max(b, b′)+δpm−1−
qn−1), there exists an (m,n) ∈ N2 such that ∀M ≥ m,N ≥ n : qN < pM , so
that P (β21|[V ∗]) P (β21|[V ∗]) ≥ a, and the proof follows as for the case that
η = {(β11, β21)} given above.
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4.2 Reinforcing Both Agents

For some games condition C1 does not hold on the initial payoff matrix (for
example, for the Prisoner’s Dilemma [5] and Snowdrift [22] games, where
the desirable new NE is at the coordinated cooperation outcome). For such
games we can instead reinforce both agents in order to almost surely guar-
antee the emergence of the new desirable NE.

Assume again that we start with the game in Fig. 1 with an initial
NE in pure actions at (β12, β22), but now both agents are reinforced agents.
Agent αi is reinforced by factor ri > 1, has exploration parameter ki > 1,
discount factor 0 ≤ δi < 1 and reinforcement set ηi. Agents α1 and α2 have
states (U, [U ]), (V, [V ]) ∈ R+2×2 × E respectively. We will show that the
convergence criterion for the generation of a new strict NE in pure actions
at (β11, β21) is:

η1 = {NEtarget} ∪ ζ1 with ζ1 ⊆ {(β11, β22)}
η2 = {NEtarget} ∪ ζ2 with ζ2 ⊆ {(β12, β21)}

(C2)

i.e. the target NE outcome must be reinforced for both agents, and the
independent deviation from the initial NE by each individual agent can
optionally also additionally be reinforced for that respective agent.

Suppose now one of the two sequences pm and qn given in Corollary
(4.2), say qn, is updated only a finite number of times from which point only
pm is updated. Then we have the recursive relation:

pm = pm−1 +
1

m
(a+ δmax(pm−1, d)− pm−1)

where d is the final value of qn after which it is not updated any more.

Lemma 4.4. Suppose

pm = pm−1 +
1

m
(a+ δmax(pm−1, d)− pm−1).

Then limm→∞ pm = a/(1 − δ) if a ≥ d(1 − δ) and limm→∞ pm = a + δd if
a < d(1− δ).

Proof. We have the following two affine maps to capture the dynamics of
the recursive relation: f : [d,∞)→ R and g : (−∞, d))→ R given by

f(x) = x+
1

m
(a+ δx− x) = x(1− (1− δ)/m) + a/m

g(x) = x+
1

m
(a+ δd− x) = x(1− 1/m) + (a+ δd)/m
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It is easily checked that if a ≥ (1 − δ)d then f has its unique fixed point
at x = a/(1 − δ) which is the unique fixed point of the system; whereas
if a < (1 − δ)d then g has its unique fixed point at x = a + δd which is
the unique fixed point of the system. Suppose a ≥ (1 − δ)d. Then, x ≥ d
implies f(x) − d = x(1 − (1 − δ)/m) + a/m − d ≥ (−d(1 − δ) + a)/m ≥ 0.
If however, x < d, then d < a + δd and g will be increasing in (−∞, d).
Thus, there would be an integer m such that pm ≥ d. Since, for x ≥ d,
the dynamics is determined by f only it follows, by Corollary 4.1, that
limm→∞ pm = a/(1− δ). If however, a < (1− δ)d, then a similar argument
shows that limm→∞ pm = a+ δd.

Corollary 4.4. Suppose

pm = pm−1 +
1

m
({a, a′}+ δmax(pm−1, d)− pm−1).

Then lim supm→∞ pm ≤ max(p, p′) and lim infm→∞ pm ≥ min(p, p′) where
p, respectively p′, are the limits of pm, given by Lemma 4.4, when only a,
respectively only a′, is chosen.

Proof. Suppose a > a′. As in Corollary 4.2, let pm(a), respectively pm(a′),
denote the sequences for which only a, respectively only a′, is chosen. We
then have pm(a) ≥ pm ≥ pm(a′) from which the result follows.

Lemma 4.5. Suppose we have the following stochastic, coupled recurrence
relation:

pm = pm−1 +
1

m
(a+ δmax(pm−1, qn−1)− pm−1)

qn = qn−1 +
1

n
({b, b′}+ δmax(pm−1, qn−1)− qn−1)

for a, b, b′ ∈ R and δ ∈ [0, 1) constant, and {b, b′} means that either b
or b′ is chosen. Then lim supm→∞ pm, lim infm→∞ pm, lim supn→∞ qn and
lim infn→∞ qn exist. This is also true in the case where there exists a finite
m,n beyond which only qn is updated.

Proof. The proof follows from Corollary (4.2) and Corollary (4.4).

Lemma 4.6. From any arbitrary point in the reinforced game, both rein-
forced agents will almost surely eventually choose their target equilibrium
actions.
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Proof. Consider the case whereby α1 is in state (U, [U ]) and has chosen
β11 a total of n11 ≥ 0 times in Q-state [U ], and β12 a total of n12 ≥ 0
times in Q-state [U ], and that from this point on it chooses its actions
according to an infinite sequence consisting only of β12. Agent α2 will choose
either β21 or β22 probabilistically, and therefore the outcome sequence will
be (β12, β21 or β22), (β12, β21 or β22), (β12, β21 or β22), ....

Since (β12, β21), (β12, β22) /∈ η1, α1’s state will not change. The Q value
for β12 following the mth selection of β12 in this infinite sequence will be
defined according to the following stochastic recurrence relation:

Qn12+m([U ], β12) = Qn12+m−1([U ], β12) +
1

n12 +m
(Dn12+m

+ δ1 max(Qn11([U ], β11), Qn12+m−1([U ], β12))

−Qn12+m−1([U ], β12))

where Dn12+m is a discrete random variable yielding a reward of either U21

or U22 for α1. By Lemma (4.5) we know that the sequence Qn12+m([U ], β12)
is bounded above, and so α1 will almost never choose β12 an infinite number
of consecutive times:∏∞

i=1
k
Qn12+i

([U ],β12)

1

k
Qn11 ([U ],β11)

1 +k
Qn12+i

([U ],β12)

1

= 0

Therefore, from any arbitrary point in the reinforced game, α1 will almost
surely eventually choose β11. A similar argument yields that α2 will almost
surely eventually choose β21.

Theorem 4.2. If condition ( C2) holds on the reinforced outcomes for agents
α1 and α2, then the reinforced game will converge to the new target NE
almost surely.

Proof. Starting from the initial game in Fig. 1, agent α1 requires m re-
inforcements on NEtarget = (β11, β21) such that r1

mU11 > U21, and α2

requires n reinforcements on NEtarget such that r2
nV11 > V12. Therefore,

at any point in the reinforced game, an upper bound on the number of
outcomes (β11, β21) required for convergence is:

max (blogr1(U21/U11)c , blogr2(V12/V11)c) + 1 (1)

Consider first the reinforcement sets η1 = η2 = {(β11, β21)}. We know
that, at any arbitrary point in the reinforced game, α1 will almost surely
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eventually choose β11, and α2 will almost surely eventually choose β21 (Lemma
4.6). What we need to show is that, at any arbitrary point in the reinforced
game, the outcome (β11, β21) will almost surely eventually occur, and that it
will thus occur the required finite number of times required for convergence
(Equation (1)).

We proceed with a proof by contradiction. Consider the case whereby,
from some arbitrary point in the reinforced game, (β11, β21) never occurs.
Then α1’s state (U, [U ]) will never change, and neither will α2’s state (V, [V ]),
since no reinforcements will occur. If α1 has chosen β11 and β12 n11 and
n12 times respectively, and α2 has chosen β21 and β22 n21 and n22 times
respectively, the joint probability of outcome (β11, β21) is:

k
Qn11 ([U ],β11)
1

k
Qn11 ([U ],β11)
1 + k

Qn12 ([U ],β12)
1

k
Qn21 ([V ],β21)
2

k
Qn21 ([V ],β21)
2 + k

Qn22 ([V ],β22)
2

We know that both of the sequencesQn11+m([U ], β11) andQn21+m([U ], β21)
are bounded below, and Qn12+m([U ], β12) and Qn22+m([U ], β22) are bounded
above (Lemma 4.5), and thus it follows that the joint probability of action-
combination outcome (β11, β21) is always greater than some minimum posi-
tive number. This contradicts the assumption that (β11, β21) never occurs,
since for an action-combination outcome to surely never occur its probability
must always be 0.

Consider now the reinforcement sets η1 = {(β11, β21), (β11, β22)}, η2 =
{(β11, β21), (β12, β21)}. We will show that, from any arbitrary point in the
reinforced game, the outcome (β11, β21) will almost surely eventually occur.

We again proceed with a proof by contradiction: consider the case
whereby, from some arbitrary point in the reinforced game, (β11, β21) never
occurs. We know that α1 will almost surely eventually choose β11, and that
α2 will almost surely eventually choose β21 (Lemma 4.6). Due to our as-
sumption that (β11, β21) never occurs, these choices will not coincide but
instead correspond to outcomes (β11, β22) and (β12, β21) respectively. Fol-
lowing m selections of β11 by α1 (and therefore following m occurrences of
(β11, β22)), where m = blogr1(max(U11, U21, U22)/U12)c + 1, α1 will be in
state (U∗, [U∗]) in which [U∗]12 is strictly a maximum. For β11 being chosen
n11 times in Q-state [U∗], β12 chosen n12 times, the Q value for β11 is:
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Qn11([U∗], β11) = Qn11−1([U
∗], β11) +

1

n11
(rn11 U∗12

+δ1 max(Qn11−1([U
∗], β11), Qn12([U∗], β12))−

Qn11−1([U
∗], β11))

We set Qm([U∗], β11) := pm and Qn([U∗], β12) := qn in order to simplify
the notation. It can be shown that, because of the rm/m term, pm → ∞
as m → ∞. In addition, because qn increases by at most 1

n(max(b, b′) +
δpm−1 − qn−1), there exists an (m,n) ∈ N2 such that ∀M ≥ m,N ≥ n :
qN < pM and the probability of α1 selecting β11 in [U∗] will be greater than
some minimum positive number a. A similar argument yields that, over an
infinite horizon, the probability of α2 selecting β21 in some state (V ∗, [V ∗])
with [V ∗]21 strictly a maximum will be greater than some minimum positive
number b, implying that the joint probability of outcome (β11, β21) will be
greater than ab. This means that (β11, β21) will almost surely eventually
occur, guaranteeing convergence.

Finally, consider the case η1 = {(β11, β21), (β11, β22)}, η2 = {(β11, β21)}.
We again assume that, from some arbitrary point in the reinforced game,
outcome (β11, β21) never occurs. The proof follows from the previous two
cases, since over an infinite horizon α1 will come to be in state (U∗, [U∗]) with
probability of selecting β11 greater than some minimum positive number a,
and α2 will remain in state (V, [V ]) with a probability of selecting β21 greater
than some minimum positive number b.

5 Simulation Results

As discussed previously, our framework can be applied to classical coopera-
tion games such as the prisoner’s dilemma and snowdrift in order to induce
cooperative outcomes. Here, we apply our framework to the game in Fig.
4, which has been proposed as a model of avoidant attachment between a
child and parent (ordinal type IIA [6]). Attachment theory, a dominant
paradigm in psychology, outlines the need for every infant to develop an
emotionally supportive, dependant relationship with a primary caregiver,
and the central tenet is that the type of attachment that emerges has a
significant and lasting impact on future psychological well-being. Work in
computational modelling of attachments includes an agent-based simulation
explaining attachment styles as adaptations to care-giving styles [31], the
study of caregiver behaviour in human-robot attachment interactions [17],
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Parent Agent
Attend Ignore

Child Agent
Go 4,2 2,3

Don’t Go 3,1 3,4

Figure 4: An attachment game with an avoidant NE (child agent payoff is
given first)

Parent Agent
Attend Ignore

Child Agent
Go 4,4 2,2

Don’t Go 3,1 3,3

Figure 5: An attachment game with both secure and avoidant NE (child
agent payoff is given first)

and work on the capacity of Hopfield strong attractors to model attachment
schemata [12] [13]. Another recent study presented a neural-cognitive archi-
tecture in an attempt to explain adaptive infant attachment behaviour and
physiology in terms of approach/avoid tendencies mediated by the OFC and
fear circuitry in the amygdala [9].

The strange situation [2] is a protocol consisting of a series of separation
and reunion episodes, designed to elicit attachment types between a child
and parent; the game in Fig. 4 captures a single interaction on the final
reunion episode. The parent’s Ignore action dominates, and the child’s stress
will increase if they go for attention but are ignored by the parent. Thus, the
child is always better off choosing Don’t Go, and the game has an avoidant
NE in pure actions at (Don’t Go, Ignore).

Evidence suggests that radical shifts in the way a parent interacts with
their child can result in a change in attachment style [38]; here we are par-
ticularly interested in modelling the transitional case from insecure to secure
attachment. The child assumes the role of a reactive agent and the parent is
a reinforced agent. The external agent can conceptually be considered as a
mediator (e.g. a psychotherapist), whose aim is to encourage the emergence
of a pure NE at the (Go, Attend) outcome, corresponding to the socially
desirable secure form of attachment [15]. Alternatively, the external agent
could be representative of a consistent, internal cognitive reappraisal process
within the parent agent.

Simulations of iterated games were run such that each iterated game
consisted of 10,000 rounds, and the individual simulations were repeated
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independently 200 times. The average number of rounds before the emer-
gence of the secure attachment NE (given by the game with ordinal type
IIB2a [6] in Fig. 5) was calculated, where we also required the outcome
to be played 5 consecutive times during play for termination. This process
was repeated for various combinations of the discount factor δ, for rein-
forcement rates r ∈ {1.1, 1.3, 1.5}, for exploration parameters k ∈ {1.5, 2},
and for the reinforcement sets η = {(Go,Attend), (Don′tGo,Attend)} and
η = {(Go,Attend)}. After generation of NEtarget, we performed a reversal
by reverting to the initial payoff matrix (i.e. initial M-state, Q-state pair).
The game was judged to have decayed when the parent’s Q value for Ignore
was greater than for Attend, and when the NEinitial outcome occurred 5
consecutive times during play.

The results are charted in Fig. 6 (for k = 1.5), and Fig. 7 (for k = 2). A
solid line indicates that η = {(Go,Attend)} was used, and a dashed line that
the reinforcement set η = {(Go,Attend),
(Don′tGo,Attend)} was used. The top charts in each figure is for to the
generation phase, and the bottom for the decay phase, with the horizon-
tal axis giving the discount factor δ, and the vertical axis is the number of
rounds for the generation or decay of NEtarget.

As the size of the reinforcement r on the parent agent’s payoff matrix is
increased, the average number of rounds required before a stable, secure at-
tachment style emerges decreases. As would be intuitively expected under
our model, the results also show us that secure attachment relationships
are more quick to emerge when η = {(Go,Attend), (Don′tGo,Attend)}
(i.e. when any outcome resulting from the parent agent selecting the ‘At-
tend’ action is encouraged, represented by a dashed line) than when η =
{(Go,Attend)} (i.e. when only the (Go,Attend) outcome is encouraged,
represented by a solid line). However, we note that this effect becomes less
pronounced as the size of the reinforcement r increases.

We also observe that, in general, parent agents with lower discount fac-
tors (i.e. those who prefer immediate rewards) see the emergence of a se-
cure attachment style more quickly than those who favour future rewards,
although the effect was far more pronounced at the higher exploration pa-
rameter of k = 2. Indeed, only 1.5% of parent agents with exploration factor
k = 2 and a large discount factor δ = 0.8 converged to a stable, secure at-
tachment style within 10,000 rounds of play, whereas the convergence rate
was 100% for k = 1.5. As the exploration parameter k increases, the prob-
ability of selecting those actions with low Q values becomes smaller, and
so one way of looking at the exploration parameter is to say that larger
values of k are representative of a parent agent who has more ‘embedded’
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behaviour. Increasing k decreases the limit of the probability of ‘Attend’
being chosen for the first time in any state, and it appears as though there
is some threshold for δ for which the initial non-transitional Q value updates
are so large that the probability of exploration becomes too small to result
in a change in attachment style within some reasonable time frame. Gen-
eration was on average slower than decay for all cases, although the effect
was far less pronounced for k = 1.5 compared to k = 2.

6 Conclusion

We have presented a conceptual framework for generating a new, strict NE
at some predetermined pure action profile. Under the assumption that the
extra reward is internally generated, we can consider changes in payoff to be
the result of a (re)appraisal mechanism, and thus the new NE to persist even
if the external agent ceases to exert an influence over the agents within the

Figure 6: Average number of rounds required for a secure attachment NE to
evolve (top), and average number of rounds following reversal for decay to
the initial insecure NE (bottom), for k = 1.5. Horizontal axis is the discount
factor (δ), and the vertical axis is the average number of rounds, for explo-
ration parameter k = 1.5. Solid lines are results for various reinforcement
rates r ∈ {1.1, 1.3, 1.5} with the reinforcement set η = {(Go,Attend)}, and
dashed lines for η = {(Go,Attend), (Don′tGo,Attend)}. In all cases the
child played BRTLM.
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Figure 7: Average number of rounds required for a secure attachment NE
to evolve (top), and average number of rounds following reversal for decay
to the initial insecure NE (bottom). Horizontal axis is the discount factor
(δ), and the vertical axis is the average number of rounds, for exploration
parameter k = 2. Solid lines are results for various reinforcement rates
r ∈ {1.1, 1.3, 1.5} with the reinforcement set η = {(Go,Attend)}, and dashed
lines for η = {(Go,Attend), (Don′tGo,Attend)}. In all cases the child
played BRTLM.

game. Alternatively, if we view the additional payoff as coming directly from
the environment, a reversal to the original matrix will lead to a gradual decay
away from the new equilibrium. We have shown how the emergence of this
new NE is almost surely guaranteed for the two-agent, two-action case, both
when only a single agent is reinforced, and when both agents are reinforced
but learn independently without opponent modelling. We hypothesise that
our new framework provides a conceptual model for how humans or agents
engaged in a game can undergo learning under the influence of an external
agent, who acts as a reinforcer in order to resolve conflict. Finally, we applied
the framework to a game representing avoidant attachment between a parent
and child, which led to an evolution in the game structure towards one with
a NE representative of the socially desirable secure form of attachment.

The framework presented in this paper has been generalised to the n-
agent case with almost-sure convergence still guaranteed (see Appendix).
Future work should consider games with initial mixed strategy equilibria,
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and more than two actions per agent, plus stochastic reinforcement on the
part of the external agent.

As discussed previously, under the intrinsic/extrinsic reward distinction,
additional reward in our framework can be related to an internally-driven
appraisal/re-appraisal process that is triggered by an additional environmen-
tal sensory cue (relating perhaps, for example, to a targeted manipulation
of the control or valance dimensions of the internal appraisal mechanism in
[34]). Such a process is essentially reflected to some forms of human psy-
chotherapy. Our conceptual framework and results provide motivation for
the development of internal appraisal mechanisms following its principles.
Such mechanisms will provide a robust way to adapt multi-agent behaviour
in a dynamic (but gradual) on-line manner, in which state representations
are internally generated and dynamic in nature, without restricting or dis-
abling intrinsic reward-appraisal mechanisms.

Although we have discussed some alternatives, we have only considered
in detail a particular internal state representation consisting of a preference
ranking over outcomes, and future work should consider alternative and
richer state representations. Internally-generated, memory-based state rep-
resentations are common in tackling partially observable environments. For
example, in [30], a free energy-based reinforcement learning agent uses both
perceptual input and the output from a recurrent neural network memory to
form its internal state representation, and successfully uses this representa-
tion to learn an optimal policy for a partially observable environment with
high-dimensional perceptual signals. Future work should consider richer
state representations incorporating task-relevant perceptual and memory
information.
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Appendices

A Convergence Proofs For n-Agents, 2-Actions

We have a set of n agents A = {α1, α2, ..., αn}, where each agent αi ∈ A
has action set Bi = {βi1, βi2}. A subset of the agents R ⊆ A are rein-
forced agents, and the remaining agents A \ R are reactive agents. Action-
combination outcomes (β1a1 , ..., βnan) for the agents are determined by the
vertices of the n-dimensional unit cube (a1, ..., an) ∈ N+

2
n

with aq ∈ N+
2 ,

q ∈ N+
n and N+

n = {1, 2, ..., n}. The payoff for outcome (β1a1 , ..., βnan) for αi
is given by Ui(β1a1 , ..., βnan) ∈ R+.

A.1 Reinforcing a single agent

For |R| = 1, |A\R| = n−1 ≥ 1 (i.e. having a single reinforced agent αi, and
at least one reactive agent), then we will show that a sufficient convergence
criterion is:

ηi = {NEtarget} ∪ ζi with ζi ⊆ {(β1a1 , ..., βi1, ..., βnan)|aq ∈ N+
2 , q ∈ N+

n } and
(C1)

∀αj ∈ A \R : Uj(β11, ..., βj1, ..., βn1) > Uj(β11, ..., βj2, ..., βn1)

i.e., for the reinforced agent, we reinforce the target equilibrium outcome
and also optionally any outcome which results from the reinforced agent
deviating from the initial NE by choosing their target NE action.

If ∃αj ∈ A \ R : Uj(β11, ..., βj1, ..., βn1) < Uj(β11, ..., βj2, ..., βn1) then by
definition a new NE cannot be generated at NEtarget = (β11, ..., βj1, ..., βn1),
since αj ’s payoff matrix does not change. If ∃αj ∈ A\R : Uj(β11, ..., βj1, ..., βn1) =
Uj(β11, ..., βj2, ..., βn1) then the dynamics will depend on how αj discrimi-
nates between outcomes with equal payoffs, although any new NE generated
at NEtarget will not be a strict NE. We will show below that convergence is
almost surely guaranteed if condition (C1) holds.

Theorem A.1. If condition ( C1) holds on the payoff matrix for the reactive
agents αj ∈ A\R, and on the reinforced outcomes ηi for the reinforced agent
αi, then the reinforced game will converge to the new target NE almost surely.

Proof. If condition (C1) holds, then in order for NEtarget to emerge as
a new strict NE we require n reinforcements on agent αi’s initial payoff
Ui(β11, ..., βi1, ..., βn1), such that:
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ri
nUi(β11, ..., βi1, ..., βn1) > Ui(β11, ..., βi2, ..., βn1)

Therefore it follows that we require:

n =

⌊
logri

(
Ui(β11, ..., βi2, ..., βn1)

Ui(β11, ..., β11, ..., β11)

)⌋
+ 1

reinforcements on Ui(β11, ..., β11, ..., β11) (n provides an upper bound on the
number of reinforcements on (β11, ..., βi1, ..., βn1) required for NEtarget to
emerge from any arbitrary point in the reinforced game). Since the reactive
agents αj ∈ A \ R are playing the BRTLM iterated strategy, we require
agent αi ∈ R to choose action βi1 ∈ NEtarget two consecutive times in order
for each reinforcement on NEtarget to occur: n is therefore an upper bound
on the number of consecutive choices of βi1 ∈ NEtarget by agent αi required
at some arbitrary point in the reinforced game as a sufficient condition for
convergence. The proof follows the same form as Theorem 4.1.

A.2 Reinforcing all agents

For |R| = n > 1 (i.e. having more than one reinforced agent and no reactive
agents), then we will show that a sufficient convergence criterion is:

∀αi ∈ A : ηi = {NEtarget} ∪ ζi with (C2)

(ζi = {Ui(β1a1 , ..., βi1, ..., βnan)|aq ∈ N+
2 , q ∈ N+

n } or ζi = {})

Theorem A.2. If condition ( C2) holds on the reinforced outcomes for all
agents αi, then the reinforced game will converge to the new target NE almost
surely.

Proof. In order to show almost sure convergence, we need to show that,
at any arbitrary point in the reinforced game, NEtarget will almost surely
eventually occur.

Consider first the reinforcement sets ∀αi ∈ A : ηi = {NEtarget}. We
consider each reinforced agent αi ∈ R = A individually. At some arbitrary
point in the game, αi is in state (Ui, [Ui]) and has chosen βi1 a total of
ni1 ≥ 0 times in Q-state [Ui], and βi2 a total of ni2 ≥ 0 times in [Ui] Assume
that, from this point on, NEtarget never occurs, and we proceed with a proof
by contradiction. The joint probability of NEtarget is:
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n∏
i=1

ki
Qni1 ([Ui],βi1)

ki
Qni1 ([Ui],βi1) + ki

Qni2 ([Ui],βi2)
=

n∏
i=1

1

1 + ki
Qni2 ([Ui],βi2)−Qni1 ([Ui],βi1)

If βi1 is chosen at the next time-step, then its Q value will be defined ac-
cording to the following stochastic recurrence relation:

Qni1+1([Ui], βi1) = Qni1([Ui], βi1)

+
1

ni1 + 1
(xni1+1 + δi max(Qni1([Ui], βi1), Qni2([Ui], βi2))−Qni1([Ui], βi1))

with xni1+1 a discrete random variable for time-step ni1+1 yielding a reward
of:

Ui(β1a1 , ..., βi1, ..., βnan) ∈ Xi \ {NEtarget}

where:

Xi = {Ui(β1a1 , ..., βi1, ..., βnan)|aq ∈ N+
2 , q ∈ N+

n }

Alternatively, if βi2 is chosen at the next time-step, then its Q value will
become:

Qni2+1([Ui], βi2) = Qni2([Ui], βi2)

+
1

ni2 + 1
(yni2+1 + δi max(Qni1([Ui], βi1), Qni2([Ui], βi2))−Qni2([Ui], βi2))

with yni2+1 a discrete random variable yielding a reward of:

Ui(β1a1 , ..., βi2, ..., βnan) ∈ {Ui(β1a1 , ..., βi2, ..., βnan)|aq ∈ N+
2 , q ∈ N+

n }

From Corollary (4.3) we know that the sequence Qni1([Ui], βi1) is bounded
below, and the sequence Qni2([Ui], βi2) is bounded above. Thus, it follows
that the joint probability of NEtarget is always greater than some mini-
mum positive number. This contradicts the assumption that NEtarget never
occurs, since for an outcome to surely never occur it must always have prob-
ability zero.

Consider now the reinforcement sets ∀αi ∈ A : ηi = {Ui(β1a1 , ..., βi1, ..., βnan)|aq ∈
N+
2 , q ∈ N+

n }. Again, we assume that αi is in arbitrary state (Ui, [Ui]). Given
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that our reinforcement sets now reinforce all outcomes involving βi1 for αi,
we have:

Qni1([Ui], βi1) = Qni1−1([Ui], βi1)

+
1

ni1
(ri

nxxni1 + δi max(Qni1−1([Ui], βi1), Qni2([Ui], βi2))−Qni1−1([Ui], βi1))

with nx = |{xj |xj = xni1 , 1 ≤ j ≤ ni1}| so that 1 ≤ nx ≤ ni1 and
∑

x nx =
ni1. We set Qm([Ui], βi1) := pm and Qn([Ui], βi2) := qn in order to simplify
the notation. It can be shown that, because of the rmxi /m term, pm →∞ as
m→∞. In addition, because qn increases by at most 1

n(max(b, b′)+δpm−1−
qn−1), there exists an (m,n) ∈ N2 such that ∀M ≥ m,N ≥ n : qN < pM
and the probability of αi selecting βi1 in [Ui] will be greater than some
minimum positive number a. A similar argument yields that each agent
will have probability of selecting βi1 greater than some minimum positive
number ai. This means that the joint probability of outcome NEtarget will
be greater than some minimum positive number

∏
i ai and so NEtarget will

almost surely eventually occur, guaranteeing convergence.
Finally, consider the reinforcement sets:

∀i ∈ [1,m], 1 ≤ m < n : ηi = {NEtarget} and

∀j ∈ (m,n] : ηj = {Uj(β1a1 , ..., βj1, ..., βna1)|aq ∈ N+
2 , q ∈ N+

n }

The proof follows trivially from the previous two cases, since for all agents
we have that βi1 is bounded below and βi2 is bounded above, so that the
joint probability of NEtarget is always greater than some minimum positive
number.
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