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Abstract—We build on a previous neural model of bonding
circuitry, in which the orbitofrontal cortex mediates between
facilitative and stress reactivity to social stimuli, via the dor-
somedial and paraventricular nucleus of the hypothalamus. We
integrate recent neuroscientific findings, and consider how the
introduction of additional reward could drive a further, counter-
conditioning based re-balancing mechanism between activation
of these networks, via increasing prefrontal-driven inhibition of
the central nucleus of the amygdala. We simulate our model
computationally, and hypothesise that such a process may be
involved in a particular phase of self-bonding in the newly
introduced self-attachment psychotherapy.

I. INTRODUCTION

Early insecure attachment experiences are now believed to
have important implications with regards to the development
of capacities for self-regulation of emotion and the governing
of various aspects of social behaviour. Self-attachment is a
new attachment-based psychotherapy that has recently been
proposed as a method for re-training an individual’s sub-
optimal attachment schema [1]. Rooted in neuroscientific theo-
ries of attachment, it consists of a number of self administrable
protocols which aim to recreate the effects of positive infant-
parent Right Hemisphere (RH) to RH interactions using instead
internal Left Hemisphere (LH) to RH interactions. With initial
success in pre-clinical trials, a key hypothesis with regards to
the therapy is that it facilitates the construction of new neural
circuitry between the Orbitofrontal Cortex (OFC) and limbic
system, in order to increasingly contain pathological and
suboptimal neural activity related to early insecure attachment
experiences.

We build on previous work and recent attachment-related
neuroscientific findings to present a computational model
of fear counter-conditioning within neural circuits mediating
stress and bonding reactivity to social stimuli. We argue that
our model can aid in understanding the dynamics underlying
a successful application of a particular phase of the self-
attachment therapy, which is concerned with the creation of
an abstract, self-directed bond.

The remainder of this paper is organised as follows. In
Section II we outline recent findings from neuroscience on
early attachment-related brain development, along with the
self-attachment psychotherapy. In Section III we detail our new
model, and in Section IV we give initial simulation results
which we propose correspond to a successful application of
a particular phase of the self-attachment protocol. Finally, in
Section V, we provide a summary and some suggestions for
future work.
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II. BACKGROUND

During the early stages of life, an infant is highly dependent
on others for their survival. Attachment theory grew out of the
pioneering work of John Bowlby, who proposed that in order
to fulfil their basic survival needs each infant had evolved a
genetic predisposition to seek out an attachment relationship
with a primary caregiver. Moreover, he argued that the nature
of these early attachment interactions was significant and
had profound implications with regards to the construction of
internal working models of self and other.

Whilst sensitive-responsive caregiving within the context
of attachment interaction fosters secure-base exploration and
optimal cognitive-emotional neural development and integra-
tion; neglectful, inconsistent and fear-inducing patterns of early
attachment interaction have been linked to the development
of avoidant, anxious and disorganised attachment schemas,
respectively. According to the secure-base paradigm, insecure
attachment hinders early exploratory and social functioning as
a result of a diversion of resources towards more immediate
and primitive survival needs. Disorganisation is particularly
significant, since it has been linked to an increased risk for
the later development of serious pathological disturbances such
as dissociative [2] and borderline personality disorders [3].
In addition, an intergenerational effect has been observed,
whereby these caregivers themselves had disorganised attach-
ment relationships as children [4].

A. Neuroscience of attachment and bonding

The internal working model (attachment schema) has been
theorised to be based in unconscious and implicit memories,
rooted mainly in RH brain regions centred on the OFC,
amygdala and hypothalamus [5] [6, p.139]; areas known to
be central to social cognition, emotional processing and fear
conditioning. Recent neuroimaging studies which have specif-
ically investigated the neural correlates of attachment, bonding
and parenting have confirmed and elaborated on this picture.

The dimension of attachment anxiety has been found to
correlate with a relatively over-active amygdala, a region long
known to be involved in fear and stress-related reactivity, and
more recently posited as playing a general role in salience
processing (see Section III). For example, [7] found increased
amygdala activation as a function of increasing attachment
anxiety when images of facial expressions were used to provide
social feedback on performance during a perceptual game.
In [8], insecurely attached women showed elevated amygdala
activation relative to securely attached women when exposed



to the crying of a non-related infant. In another study [9],
cortisol measurements were collected across an entire day (in
a non-laboratory setting), and anxious attachment was found to
be correlated with a relatively elevated and flat cortisol profile.

Much evidence from rat studies implicates the Dopamine
(DA) reward system in maternal and bonding behaviour ([10]),
and a similar picture has started to emerge for humans. For ex-
ample, [11] used fMRI to look at activity in reward circuitry in
response to mothers viewing photographs of their own relative
to other people’s children. They found increased activation
of the Ventral Tegmental Area (VTA) and Substantia Nigra
pars Compacta (SNc), which both contain major concentrations
of DA-releasing neurons; and the dorsal striatum (Caudate
Nucleus (CN) and putamen) and OFC, regions which are
known to receive dopaminergic projections. In addition, in
[12] relatively low ventral striatum and OFC activity was
found in avoidant vs secure mothers in response to seeing
own-baby images. Furthermore, reward circuit activation in
social feedback appraisal situations appears to be modulated by
attachment type. For example, [7] found that increasing attach-
ment avoidance was correlated with decreasing activations in
the VTA and ventral striatum in response to facial images con-
veying social feedback. Some evidence suggests involvement
of reward circuitry in response to infants in general (i.e. not
necessarily own infants). For example, [13] found activation
of the medial OFC (a region implicated in stimulus-reward
association) in response to images of unfamiliar infants but
not adults.

Another important hormone with regards to attachment is
Oxytocin (OXT). Elevated OXT has been linked to a range
of pro-social behaviours, including parenting and bonding
behaviours, and elevated trust. For example, [14] found that
higher levels of OXT predicted greater amounts of maternal
behaviours such as gaze towards infant, positive affect and af-
fectionate touch, during the postpartum period. Another study
looked at OXT in both new mothers and fathers postpartum
[15], finding that both maternal and paternal OXT levels
increased across the period. Whilst maternal OXT was related
to the amount of affectionate parenting behaviours (as in [14]),
paternal OXT correlated with stimulatory parenting behaviours
such as “proprioceptive contact, tactile stimulation, and object
presentation”. Furthermore, OXT levels have been linked to
earlier attachment experience and social development. For
example, [16] found that adult women exposed to childhood
maltreatment had lower OXT levels compared to controls.

Despite strong evidence for the involvement of OXT in
encouraging many types of pro-social and attachment-related
behaviour, it appears increasingly unlikely that OXT simply
acts as a universal bonding hormone. For example, intranasal
OXT administration was found to decrease cooperation during
trust games, when participants interacted with anonymous
strangers compared to familiar persons with whom they had
previously been acquainted [17]. Intranasal OXT has also been
found to decrease the likelihood of cooperation during a social
dilemma game in adults with borderline personality disorder
and high levels of attachment anxiety [18]. In [19], securely
attached individuals remembered their mother as more caring
and close in childhood following intranasal OXT relative
to placebo, whereas anxiously-attached individuals remem-
bered their mother as less caring and close (using self-report

measures). Such results suggest that, rather than universally
promoting bonding behaviour, exogenous OXT administration
may instead result in an amplification of the influence of
pre-existing interpersonal schemas [20], likely making ex-
ogenous OXT administration unsuitable as a treatment for
many attachment-related disorders. This provides motivation
for the development of therapies in which OXT secretion is
naturally enhanced as a side effect of changes to the underlying
attachment schema.

B. Self-attachment therapy

Self-attachment [21] is a new attachment-based psychother-
apy, rooted in the belief that many affect dysregulation disor-
ders have their primary causes in suboptimal early attachment
experience. The therapy aims to naturally stimulate the release
of OXT and DA, in order to encourage neural plasticity and in-
creasingly contain suboptimal and pathological neural activity
and increase self-agency. It is related to a class of compassion-
focused therapies and compassion-focused imagery techniques,
which have shown effectiveness with regards to stress and
affect regulation [22].

Under the self-attachment paradigm, the self of the individ-
ual undergoing the therapy is conceptualised as being split into
an inner child and inner adult. The inner child corresponds to
the emotional self that becomes dominant under stress, thought
to be rooted mainly in the RH. The inner adult corresponds to
the more rational self dominant under times of calm and low
perceived threat, that is thought to be rooted mainly in the LH.
In essence, the therapy aims to recreate the effects of early
RH to RH attachment-based interactions between an infant
and primary caregiver, using instead LH to RH interactions
within the individual’s own brain. This is achieved by means of
simulating (using imagery techniques) the interactions between
a child and secure caregiver, with the inner child and inner
adult serving as both the source of, and target for, attachment-
based compassion.

In order to complete later stages of the therapy, the in-
dividual must first establish an imaginative (but passionate)
loving relationship with the inner child, which is subjectively
experienced as falling in love with them. There is evidence to
suggest that humans are capable of, and indeed driven to, form
bonds with both inanimate objects and non-material beings of a
more abstract nature. For example, it is common for children to
form bonds with inanimate transitional objects that can serve
as mother substitutes [23]. In addition, throughout much of
history, bonds formed and reinforced through religious practice
have been a predominant means of regulating emotion and
social behaviour. A key focus for adherents to the Abrahamic
religions is on the development of a personal and intimate
relationship with God, and it has been argued that such a bond
meets many of the criteria of an attachment relationship [24].
An fMRI study of Danish Christians [25] found activation
of the CN during formal prayer, suggesting that, as with
attachment and bonding to a human, these effects are mediated
(at least in part) by the brain’s reward system. As discussed
previously, the CN receives dopaminergic projections, and has
been proposed to play an important role in attachment-related
approach behaviours [26].

A key technique in self-attachment is to enhance the
bonding process through the use of activities such as song and



dance directed towards the inner child which, it is thought,
stimulate the dopaminergic reward system. Music, which has
been proposed to play a primary role in synthesis within the
mind [27], has long been recognised as a powerful mediator
of emotional state, and fMRI studies have shown correlated
activation in a wide range of brain regions implicated in
emotional processing (e.g. [28]). Furthermore, recent studies
have shown evidence for the involvement of the reward system
during passive listening to self-reported pleasurable music. For
example, in [29], fTMRI and PET scans revealed striatal DA
release in the CN and Nucleus Accumbens (NAc) in response
to anticipation and peak emotional response to the music,
respectively. Song, too, has been shown to activate emotion
and reward circuitry in both overt and imagined form. [30]
compared brain activity while subjects either spoke or sang
words to a familiar song. For singing opposed to speaking,
they found a relative increase in areas including medial PFC
and NAc. In another study [31], professional classical singers
were asked to imagine singing an aria (love song), resulting
in intense activation in emotional areas (including amygdala,
anterior cingulate, and medial prefrontal cortex) along with the
CN and putamen.

As discussed above, evidence suggests involvement of
reward circuitry during infant interaction, especially for own-
infant. In addition, in songbirds at least, it is known that singing
directed towards a potential mate, but not undirected singing,
results in increased DA concentrations in the VTA [32]. Thus,
we hypothesise that song directed towards the conceptualised
inner-child is also likely to be a powerful activator of the
dopaminergic reward system in humans. In this paper, we
begin to explore (in the form of a computational model) some
of the neural mechanisms that might underlie the formation
of this abstract, self-directed bond. During this phase of the
protocol, the volunteer focuses on happy and unhappy images
of themselves as a child in order to conceptualise the inner-
child, before attempting to create an attachment relationship
with this abstract entity. The volunteer is encouraged to sing
and/or dance (either overtly or imagined) with the inner child
in order to accelerate and enhance this bond making process.
The hypothesis presented in this work is that the success of
such techniques in driving the self-directed bond formation
process may be (at least in part) due to their facilitation of a
form of counter-conditioning for fearful associations formed
to classes of social stimuli.

C. Related work

A series of recent works have begun to explore the dy-
namics of attachment using computational models. In [33], a
number of cognitive agent architectures are presented, aiming
to capture empirically observed behavioural aspects of infant
attachment using a winner-take-all competition between fear
and attachment behavioural systems (for survival), and ex-
ploratory and socialisation systems (for learning). In develop-
mental robotics, the attachment secure-base and dyadic arousal
regulation paradigms are now being studied as mechanisms for
driving a robot’s exploration in a novel environment [34]. An-
other recent study presented a neural-cognitive architecture in
an attempt to explain adaptive infant attachment behaviour and
physiology in terms of approach/avoid tendencies mediated by
the OFC and fear circuitry in the amygdala [35]. Attachment

schemas and prototypes have also been considered within the
context of strong patterns in a Hopfield network [36].

III. MODEL

We now present a computational neural model to attempt to
explain how bonding circuitry activation may be strengthened,
and stress reactivity dampened, under a counter-conditioning
paradigm. This is achieved by introducing and associating
additional reward with a class of social stimuli that have previ-
ously been conditioned as being fearful/threatening in nature,
resulting in a prefrontal-mediated inhibition of stress circuitry
and increased release of OXT. The overall architecture is
shown in Fig. 2.

Our starting point is Levine’s neural model in [37], which
identified the OFC as the key region in mediating the relative
strength of activity in fight/flight circuitry (focused on the
amygdala, Parvocellular part of the Paraventricular Nucleus
of the Hypothalamus (PVNp) and Locus Coeruleus (LC))
and bonding circuitry (focused on the reward system). In
particular, it is proposed that the OFC sends, via the Dor-
somedial Hypothalamus (dmH), different inhibitory strengths
to the Magnocellular part of the Paraventricular Nucleus of
the Hypothalamus (PVNm) (which controls release of OXT
and Vasopressin (VA)) and the PVNp (which controls release
of Corticotrophin releasing factor (CRF)). Release of OXT
and VA to the reward system enhances the facilitation of
the creation of social bonds, whilst CRF release serves to
further stimulate activity in the amygdala-PVNp-LC stress
loop, inhibiting social approach.

The OFC and Basolateral Amygdala (BLA) are known
to have extensive bidirectional connections, which are imple-
mented in our model within a Deep Belief Network (DBN)
(using the architecture shown in Fig. 1). The basic building
block of a DBN is a Restricted Boltzmann Machine (RBM)
[38], which has recently been used for modelling of the
psychotherapeutic process [39]. An RBM is a stochastic gen-
erative neural network defined by visible units z and hidden
units h, and parametrised by 6 = {b,c, W}, with weights
W, hidden biases b and visible biases ¢. In an RBM h and
z are conditionally independent given each other, and each
configuration of  and h is assigned a scalar energy F(z, h) =
=20 Wijhizj =37, cjzj— 37, bih; giving joint-distribution
over x and h: p(z, h) = e’E(m’h)(Zw h e*E(Ivh))_l. For both
x and h binary, units are activated ac’cording to a probability
given by the logistic function o(z) = (1 + =) 1. A learning
procedure called contrastive divergence [40] gives a simple
Hebbian-like gradient descent learning rule for parameter
updates. To construct a DBN, we first train an RBM and then
use its hidden layer activations as the visible layer in another
RBM. It has been shown that a variational lower bound on
log p(z) can always be increased with each additional new
layer [41], with successive layers of hidden units coming to
learn increasingly higher-order features over the hidden unit
activations of the previous layer.

In both humans and animals, the amygdala has long been
known to be crucially important in fear conditioning, in which
a previously neutral Conditioned Stimulus (CS) is repeatedly
paired with a noxious Unconditioned Stimulus (US) that elicits
a (fear related) Unconditioned Response (UR). Over time, the
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Fig. 1. BLA-OFC DBN architecture

CS comes to elicit the UR independent of the US, as a result
of the learnt association. It is believed that the CS and US
representations enter and converge on the BLA, which seems
to be important in fear acquisition; whilst expressions of the
fear response are triggered by the Central Nucleus of the
Amygdala (CeA)’s various projections to regions including the
hypothalamus and parasympathetic nervous system.

In addition to responding to stimuli with negative emotional
valance, it is now known that the amygdala additionally also
responds to stimuli with both positive and neutral valance,
and furthermore appears to respond preferentially to social
vs non-social stimuli. For example, [42] found similar levels
of amygdala reactivity to positive and negative faces (social
stimuli), but more activation to neutral social relative to neutral
non-social stimuli. Such findings support theories for a more
general role of the amygdala in the processing of stimuli
that are predictive of biologically relevant events (within the
context of the individual’s current needs).

In our model we therefore consider associations between
CS and both appetitive and aversive (biologically salient) US
representations. Both CS and US representations enter the
BLA at the input level, and the activations of the first layer
of hidden units (the BLA layer, B) in the DBN serve as
input to the CeA feed-forward network C' (Eq. 2). Thus, the
BLA layer B (the first hidden layer in the DBN) learns latent
representations over associations formed between the CS and
UsS.

In addition to feeding forward into the CeA, BLA activa-
tions at BB also serve as input into to the OFC (the top hidden
layer of the DBN, O), along with the CS representation and
n = 10 softmax units representing associated rewards, giving
a modified DBN architecture. The activation of the OFC’s
hidden layer O in turn serves as input to the Intercalated Cells
of the Amygdala (ITC) feed-forward network I (Eq. 3), whilst
the activation state of the OFC’s reward nodes K serves as
input to the dmH-PVNp feed-forward network D (Eq. 4). This
flow of information from the BLA to the OFC, with the BLA
hidden unit activations B in turn influencing the OFC hidden
unit activations O, is consistent with a recent study that found
a dominant directional influence from BLA to OFC at the point
of decision making [43].

A. Stress/Arousal System

The stress/arousal system is intended to encapsulate the
basic dynamics of the CeA, PVNp and LC loop described in
[37]. It is excited by input from the BLA (capturing BLA-CeA
excitation), inhibited by the dmH (capturing dmH-PVNp inhi-
bition), and in turn excites the BLA (capturing Norepinephrine
(NE)-based stimulation by the LC). This creates a positive
feedback loop which serves to further enhance stress levels

once this circuit is activated, until stimuli inputs significantly
change. The stress level at time ¢ is given by:

S(t) = max(0, C(t) — I(t) — D(¢)) 1)

for C(t) the activation strength along the BLA-CeA pathway
at time ¢, and I(t) and D(t) the inhibitory strengths of the
ITC and dmH at time ¢, respectively. The activation strength
of the BLA-CeA pathway at time ¢ is:

o(t) = tanh <Z Wiij(t)> +AS(t—1) 2)

where B; € {0,1} is the first hidden-layer activation in the
BLA-OFC DBN (i.e. the BLA layer), and S(¢ — 1) is the
stress/arousal level for the previous timestep. Thus, the BLA
activates the CeA at a strength dependent on feedback from the
stress/arousal system in the previous timestep (with v = 0.1).
Inhibitory strength of the ITC at time ¢ is given by:

I(t) = tanh (Z Wijoj(t)> 3)

where O; € {0,1} is the top hidden-layer activation in the
BLA-OFC DBN (i.e. the OFC layer). Similarly, inhibitory
strength of the dmH on the PVNp pathway at time ¢ is given
by D(t), where:

D(t) = Ztanh (Z Wi K; (t)> 4

for K; € {0,1} the state of the OFC’s associative reward
node ¢ at time ¢ (determined by running a Gibbs chain). OXT
levels ¢(t) at time ¢ are calculated based on the strength of
the inhibitory input to the PVNm:

as(t):max(l,qu(f[l)) )

where ¢ = 2 is a parameter controlling maximum OXT level,
g ~ N(M(t),0.05) (to introduce a very small amount of
random noise in OXT levels), and M (¢) is the strength of
the inhibition on the PVNm at time ¢:

M(t) =" tanh <Z Wi K (t)) (©6)

and M40 = ), tanh (W;1) is the maximum inhibition on
the PVNm (i.e. inhibition on the PVNm for minimum reward
input from the OFC).
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The overall neural architecture, based on both [37] and [44]. Conditioned (CS) and unconditioned (US) stimuli representations enter the basolateral

amygdala (BLA), with CS representations also entering the orbitofrontal/ventromedial prefrontal cortex (OFC/vmPFC). Stress reactivity in the central nucleus
of the amygdala (CeA) - parvocellular part of the paraventricular nucleus of the hypothalamus (PVNp) - locus coeruleus (LC) loop is stimulated by the BLA,
and inhibited by OFC/vmPFC - intercalated cells (ITC) and dorsomedial hypothalamus (dmH) - PVNp pathways. Oxytocin (OXT) release is controlled by the
OFC/vmPFC - dmH - magnocellular part of the paraventricular nucleus of the hypothalamus (PVNm). Dopamine (DA) release drives inhibitory learning in

vmPFC-ITC pathways.

B. Reward System

There is strong evidence to suggest that phasic DA firing
signals an appetitive reward prediction error (i.e. unexpected
rewards) [45]. Midbrain DA neurons in the VTA project to
the OFC and Ventromedial Prefrontal Cortex (vmPFC) via
the mesocortical pathway, and evidence from rodent studies
suggests a critical role for DA in the prefrontal cortex for the
consolidation and retrieval of fear extinction (see [46] for an
overview). This may be at least in part due its phasic signalling
of appetitive reward prediction errors, strengthening vmPFC-
ITC connections known to result in inhibition of the CeA fear
response [47] [44].

Although mechanisms underlying the signalling of aversive
outcomes and unexpected punishments are less clear, DA
projections from the VTA do also reach the amygdala (both
directly, and via the NAc and mesolimbic pathway), and there
is some evidence to suggest a role for DA in fear acquisition
[46]. A recent theory proposes that whilst DA neurons in
general respond to unexpected cues, there are in fact two
distinct types of DA neuron population [48]. Under this view,
one population of DA neurons, found in the ventromedial
SNc and throughout the VTA, is involved in value learning,
with increases in phasic firing for unexpected reward and
slight decreases for unexpected punishment. These signals are
projected to areas involved in value learning, such as the
Nucleus Accumbens Shell (NAcs), dorsal striatum and vimPFC.
A second population of DA neurons, found in the dorsolateral
SNc and medial VTA, is involved in signalling salience, with
increased phasic firing for highly salient events (regardless of
valence). These signals are believed to be sent to areas involved

in orienting, cognitive processing and general motivation, such
as the Nucleus Accumbens Core (NAcc), dorsal striatum and
dorsolateral prefrontal cortex.

In our model, we assume that reward predictions are
computed by the OFC and signalled to the reward system.
We consider value-signalling DA neurons, which encapsulate
appetitive and aversive reward prediction errors in phasic firing
patterns that are projected to the OFC/vmPFC and amygdala.
In the model, reward predictions K are associative activations,
resulting from a Gibbs chain initiated at a representation
composed of the CS and BLA hidden unit activation, with
only the reward (K) nodes un-clamped during the chain. The
OFC’s reward nodes K use a 1-of-n encoding (i.e. they encode
n reward categories). They are activated according to a softmax
function, and we assign the index of the activated node to
a particular reward prediction P(t) € Z. More explicitly,
we use n = 20 reward units and distribute these equally
amongst positive and negative rewards. For indexed-reward
values increasingly uniformly from —n/2 to n/2, exclusive
of zero, then the predicted reward at time ¢ is given by:

ifj <z
otherwise

mw:{?‘%‘l %)

J— 3

for j € NT the index of the activated unit in the OFC’s softmax
reward units at time ¢ (i.e. K;(t) =1 and K,-;(t) = 0). The
reward-prediction temporal difference error F'(t) at time ¢ is
then given by:



F(t) = o(t)(R(t) + 0P (t) — P(t — 1)) (8

for § = 0.1 the temporal-difference discount factor, R(¢) the
reward at time ¢, P(t) the predicted reward at time ¢ and P(t —
1) the predicted reward at time ¢ — 1.

Here we assume a modulating effect of OXT on phasic
DA firing (the reward prediction error). In [49], it is sug-
gested that OXT could influence both salience and valance
attribution based on such an effect on the two distinct DA
neuron populations discussed previously. This is based on
evidence suggesting a role for OXT in increasing the salience
of social cues, on the location of OXT receptors throughout
the mesocorticolimbic system, on recent evidence suggesting
that activation of OXT neurons that target the VTA stimulate
DA neurons, and on behavioural evidence suggesting a role
for OXT in facilitating shifts in valance attribution (see [49]
for a discussion). In our model, OXT can modulate valance
attribution by increasing phasic DA firing F'(¢) for positive un-
modulated reward prediction error R(¢)+dP(t)—P(t—1) > 0,
and decreasing F'(t) for unmodulated negative error.

C. Counter-conditioning

As discussed previously, in individuals with high attach-
ment anxiety, stress circuitry appears to be over-active and
could be triggered for a large and general class of social
stimuli. A key part of self-attachment therapy is pairing classes
of previously fearful or stress-inducing social stimuli with
alternative representations (e.g. music) that naturally induce
reward. Thus, we hypothesise that self-attachment therapy
serves, at least in part, to counter-condition negative and fearful
associations learnt for classes of social stimuli as a result
of previous relational trauma. Based on findings from fear
extinction, we consider here a mechanism which (in addition
to the OFC-dmH-PVNp inhibitory pathway originally detailed
in [37]) may inhibit stress circuitry.

In fear extinction, the CS is presented without the aversive
US until it no longer elicits the UR. Rather than CS:US
fear memories being “forgotten”, it seems that fear extinc-
tion predominantly involves the creation of new CS:no-US
memories, formed in descending connections from the vmPFC
to the ITC, that in turn inhibit the CeA [47]. In contrast to
fear extinction, in a counter-conditioning paradigm the CS is
repeatedly paired with a qualitatively different (i.e. appetitive
for fear) US, until the CS no longer elicits the UR. Although
few studies have explicitly looked at the neural mechanisms
underpinning counter-conditioning, behavioural experiments
suggest that counter-conditioning to a positive (or even neutral)
US is more effective in inhibiting a fear response compared to
extinction alone (e.g. [50]).

Here we consider a similar vmPFC-ITC extinction in-
hibitory process to occur as a result of the counter
conditioning-like aspects of the self-attachment protocol. Our
computational model of this process is based on the recent
fear extinction model in [44]. In that model, the learning of
conditioned fear responses in the CeA is driven by prediction
errors encapsulating unexpected punishment, that serve to
strengthen activation based on signals coming from the BLA.
On the other hand, extinction learning is driven by prediction

errors encapsulating less punishment than expected, which
strengthen activation of the ITC (which in turn inhibits the
CeA) based on signals from the vimPFC. Also considered is
the role of hippocampal inputs to the BLA and vmPFC in terms
of context modulation, although we exclude those inputs here
for simplicity.

Similarly to [44], we assume that positive reward pre-
diction errors (i.e. signalling unexpected rewards) strengthen
inhibitory activation along the vmPFC-ITC pathway, whilst
negative reward prediction errors (i.e. unexpected punish-
ments) strengthen activation of the BLA-CeA pathway. As
in that model, we update vmPFC-ITC weights in a Hebbian
manner according to:

3 - Ozith(t)Oi (t)]j (t) if F(t) >0
AW (t) = {0 otherwise ©)
and similarly, BLA-CeA weights according to
) maeed F(0)Bi(8)C(t) if F(t) <0
AW (t) = {O otherwise (10)

Thus, as compared to an extinction, our model will af-
ford more rapid strengthening of ITC inhibition, driven by
the relatively larger prediction errors (and thus weight up-
dates) between the vmPFC and ITC. In our model, CS-
representations are hypothesised to correspond to a general
class of social stimuli that have previously been paired with
negatively-valenced US-. US+ representations are related to
the reward-inducing activities (such as song), and positively-
valenced infant perceptions, that are utilised during the proto-
col. This gives a reasonable first approximation to a counter-
conditioning model, although the finding of enhanced fear
inhibition in counter-conditioning to a neutral US as compared
to extinction may suggest a more intricate process in the brain
[50].

IV. SIMULATION RESULTS

We first generated 40 random binary stimuli, each of length
200 bits (where each bit was activated independently with
probability 0.1). These stimuli were split evenly amongst the
four stimulus categories (CS+/- and US+/-), and each US+/-
stimulus was assigned a reward/punishment with a surjective
mapping to {z|z € Z,1 < x < 10} and {z|z € Z,—-1 >
x > —10}, respectively. We then created equal quantities of
US+ paired with CS+ and random stimuli; and US- paired with
CS- and random stimuli, to create an input dataset of size 200.
The DBN was then trained on this input data (with 500 hidden
units in the second and third layers, a learning rate of 0.05,
a sparsity target of 0.01, an L2 weight decay penalty of 0.02,
and batch size 50, for 2000 epochs), so that it learnt sparse
latent representations for the CS and US associations.

The BLA-CeA feed-forward network was trained to have
a high activation for CS-:US- pairs, using as input the first
hidden layer (BLA) activations in the DBN, and the weight
update rule described above with temporal difference errors
proportional to the corresponding punishment for the US-.
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Fig. 3. Predicted/actual reward, Dopamine (top) and Oxytocin (middle)
levels at each time-step (x-axis) of a typical run through the bonding counter-
conditioning protocol. The bottom chart shows the reduction in average stress
reactivity to the CS- permuted with 1, 5, 10 and 15% random noise, taken as
an average over 100 activations at each time-step of the protocol.

Similarly, we trained the vmPFC-ITC network to have high
activation for CS+:US+ pairs, using as input the second hidden
layer (OFC/vmPFC) activations in the DBN. Both the BLA-
CeA and vmPFC-ITC feed-forward networks were configured
with 200 hidden units, a learning rate of 75x 10~% and weights
initialised randomly in the interval [0,107%]. Finally, the
weights in the OFC-dmH-PVNp feed-forward network were
initialised to have high activation (inhibition) for increasingly
large reward representations in the OFC (i.e. generally higher
activation in the OFC-dmH-PVNp network corresponded to
activation of units with decreasing index in the OFC’s softmax
reward units). Similarly, the OFC-dmH-PVNm network was
initialised to have increasingly high activation (inhibition) for
increasingly large punishment representations (corresponding
to lower indices in the OFC’s reward units). Both the OFC-
dmH-PVNp and OFC-dmH-PVNm feed-forward networks had
the same number of hidden units as the BLA-CeA and vmPFC-
ITC networks described above, however weights were fixed af-
ter this initialisation and not subject to any learning. This gave
a network that responded with relatively high stress to CS-
(and slightly permuted CS-) inputs, but relatively low stress
for CS+ (and slightly permuted CS+) inputs, representing an
individual with highly aversive stress reactivity to a particular
set of inputs (which are here taken to correspond to a class of
attachment-related social stimuli).

We then attempted to simulate the counter-conditioning
elements of the bonding phase of the self-attachment protocol,
for the same CS- shown in Fig. 4 (top). On every iteration,
we paired this CS- with one of either two US+ stimuli (with
corresponding rewards of 7 or 8), and propagated these into
the OFC to compute the predicted reward (Eq: 7). Based
on this predicted reward, and the actual reward associated
with the US+, we computed the temporal difference error
(corresponding to a phasic DA signal) as in Eq. 8, and used
this to update the weights in either the BLA-CeA or OFC-
ITC feed forward networks (according to Eq. 9 and Eq. 10).
The CS-:US+ was then also stored in the DBN along with the
categorical representation for the received reward, using online
learning (i.e. a single epoch).
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Fig. 4. Stress circuit reactivity for the counter-conditioned CS- before and
after bonding protocols. Before application of the protocol, presentation of
the the CS- (bottom) at random discrete timesteps is associated with large
CeA and stress spikes (top, red). After counter-conditioning, ITC and dmH
inhibition reduces associated stress reactivity (middle, red).

The onset of the protocol results in large temporal-
difference errors (phasic DA release), which spikes when
the OFC’s reward-prediction shifts before settling to a lower
baseline level (Fig. 3, top). This spike in DA coincides with
a spike in OXT (Fig. 3, middle), and a large drop in average
stress levels associated with the CS- randomly permuted at
1,5,10 and 15% levels (Fig. 3, bottom). The effect can be
seen in Fig. 4, which shows 100 time-steps in which either
the counter-conditioned CS- stimulus, or a random stimulus,
is presented to the network along with a random pattern for
the US input, before (top) and after (bottom) application of
the protocols. Before counter-conditioning, stages in which
the CS- is presented correspond with large spikes in CeA
input, low dmH inhibition on the PVNp, and a correspond-
ingly high stress level. Inhibition from the dmH and ITC are
increased following completion of counter-conditioning, with
corresponding reduced stress reactivity.

V. CONCLUSION

We presented a computational neural model of OFC-
mediated stress and bonding reactivity to social stimuli. In
particular, we considered how this balance could be driven
by both OFC-dmH inhibition on PVNp, and vmPFC-ITC
inhibition on CeA. We showed how a counter-conditioning
procedure, which we likened to a particular phase of the new
self-attachment psychotherapy, could be used to drive a re-
balance of activity between these circuits by increasing both
inhibition in these pathways, and OXT release. Based on recent
evidence, we considered here a role for OXT in modulating
DA, although we note that DA might also have a modulating
effect on OXT [49]. Recent studies have also suggested a role
for OXT in direct modulation of stress reactivity to fearful
stimuli, potentially mediated via receptors in the amygdala,
although such effects are not explored in this initial model.
For simplicity, we did not consider the role of the hippocampus
in either fear context modulation [44] or short term memory
effects of bonding [37]. Neither did we consider VA, which
is believed to play a role in selective attention and memory
modulation [37]. Future work should consider such effects.
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